augmenting $x$ along $p$ by $\alpha$ gives $(y_e)$ with $y_e \coloneqq \begin{cases}x_e+\alpha, &e \in p \text{ forward edge}\\x_e-\alpha, &e^\leftarrow \in p \text{ backward edge}\\x_e\end{cases}$
Ford-Fulkerson-Algorithm:
Input: $s$,$t$-network $N$ Output: maximum $s$,$t$-flow $x$ in $N$
(1) Start with $x_e \leftarrow 0$ f.a. $e \in E$
(2)While $\exists x$-augmenting $s$,$t$-path in $N^x$ Do
(3).. compute $\alpha \leftarrow \min\set{\nu^x_e \smid e \in p}$
(4).. augment $x$ along $p$ by $\alpha$
$A \subseteq V$ $s$,$t$-cut $\coloniff$ $s \in A, t \notin A$ ⇝ has capacity $\ccaps{A} \coloneqq \sum_{e \in \edgesFrom{A}}\nu_e$
Lemma 2.14: For any $s$,$t$-flow $x$ and $s$,$t$-cut $A$ we have
$\fvals{x} = \sum_{e \in \edgesFrom{A}}x_e - \sum_{e \in \edgesTo{A}}x_e \leq \ccaps{A}$.
Lemma 2.26: $N^x$ without negative cycles and $p$ an efficient $s$,$t$-path. mmmm Then, augmenting along $p$ does not create negative cycles.
Lemma 2.27: For any $s$,$t$-flow $x$: mm $x$ min-cost-flow $\iff$ no negative cycles in $N^x$
Cycle-Cancelling-Algorithm:
Input: $s$,$t$-network $N=(G,s,t,\nu,\gamma)$, Input: value $v \leq$ min-cut-cap Output: min-cost-flow $x$ of value $v$ in $N$
(1) Start with any $s$,$t$-flow $x$ of value $v$
(2)While $\exists x$-augmenting cycle $c$ with $\gamma_c \lt 0$ Do
(3).. augment $x$ along $c$ by $\min\set{\nu^x_e \smid e \in c}$
Successive-Shortest-Path-Algorithm:
Input: $s$,$t$-network $N=(G,s,t,\nu,\gamma)$ without cycles Input: of negative cost, value $v \leq$ min-cut-cap Output: min-cost-flow $x$ of value $v$ in $N$
(1) Start with zero flow $x$
(2)While $\fvals{x} \lt v$ Do
(3).. compute efficient $s$,$t$-path $p$ in $N^x$
(4).. augment $x$ along $p$ by $\min\set{v-\fvals{x},\min\set{\nu^x_e \smid e \in c}}$